
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1989

An expert systems based automatic control
software generator for the Programmable Logic
Controller
Sangeet Bhatnagar
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Systems Engineering Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Bhatnagar, Sangeet, "An expert systems based automatic control software generator for the Programmable Logic Controller" (1989).
Retrospective Theses and Dissertations. 16873.
https://lib.dr.iastate.edu/rtd/16873

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F16873&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F16873&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F16873&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F16873&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F16873&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F16873&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=lib.dr.iastate.edu%2Frtd%2F16873&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/16873?utm_source=lib.dr.iastate.edu%2Frtd%2F16873&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

An expert systems based automatic control software generator

for the Programmable Logic Controller

by

Sangeeta Bhatnagar

A Thesis Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

:'IASTER OF SCIEKCE

Major: Industrial Engineering

Signatures have been redacted for privacy

Iowa State eniversity

Ames, Iowa

1989

www.manaraa.com

11

TABLE OF CONTENTS

1 INTRODUCTION

2 REVIEW OF RELEVANT LITERATURE.

3

2.1 Historical Background

2.2 Expert Systems in Industrial Control.

2.3 Automatic Code Generators

METHODOLOGY

3.1 General Structure of the Software Generator.

3.1.1 Introduction

3.1.2 The user interface module

3.1.3 The wiring instruction ..

3.1.4 The error checking module

3.1.5 The task code module

3.2 Implementation........

3.2.1 The user interface module

3.2.2 The error checking module

3.2.3 The task code module . . .

1

4

4

10

12

18

18

18

23

33

34

35

35

35

39

4:1

www.manaraa.com

4

5

III

3.2.4 Some general comments on the user interface module and task

code module designs .. 45

RESULTS

4.1 A Complete Example.

4.1.1 Explanation of the process

4.1.2 Process description used by the user interface module

4.1.3 Intermediate functional code

4.1.4 \Viring instruction

4.1.5 Task codes

4.1.6 Ladder Logic Diagram

CONCLUSION .

5.1 Future Research

50

50

51

53

55

56

56

57

59

60

6 APPENDIX A USER MANUAL FOR THE USER INTER-

FACE MODULE 62

7 APPENDIX B USER MANUAL FOR THE TI-530 PLC 71

8

9

APPENDIX C TASK CODES FOR THE TI-530 PLC

BIBLIOGRAPHY

80

87

www.manaraa.com

Table 3.1:

Table 3.2:

Table 3.3:

Table 3.4:

Table 4.1:

Table 4.2:

Table 6.1:

Table 6.2:

Table 6.3:

Table 6.4:

Table 6.5:

Table 7.1:

Table 7.2:

Table 7.3:

Table 8.1:

Table 8.2:

IV

LIST OF TABLES

Binary input and output devices.

Keywords and their attributes

Operation dbcription format

Device, instruction, and function symbols

System specification

\Viring instruction for example system specification

26

47

48

49

53

56

Keywords and their attributes used in the system description 64

Operation description format

Common PLC internal devices and instructions

Single input functions and their operands

~Iutiple input functions and their operands

TI-530 PLC internal devices and instructions

TI-530 PLC functions

Memory addresses used as function operands.

Task codes for TI-530 PLC

Memory areas and their corresponding task codes

65

65

66

70

73

74

79

81

85

www.manaraa.com

v

LIST OF FIGURES

Figure 2.1: An electromechanical relay 7

Figure 3.1: Expert systems based control software generator for the PLC 20

Figure 3.2: General framework 22

Figure 3.3: General breakdown of a process 25

Figure 3.4: Basic form of functional code 31

Figure 3.5: Algorithm of the User interface module. 40

Figure 3.6: General algorithm used to convert functional code to task

code 42

Figure 4.1: Layout of drilling machine 51

Figure 4.2: Ladder Logic Diagram for example system specification. 58

www.manaraa.com

1

1 INTRODUCTION

In a manufacturing facility, transfer lines, process control, robotics, material

handling and flexible manufacturing systems all require some form of control to

ensure their successful operation. Programmable Logic Controllers (PLCs) are

used extensively today for manufacturing discrete system control. The PLC is

programmed using Relay Ladder Logic diagrams. ·Writing and debugging programs

for the PLC is a time-consuming and error-prone process and it accounts for a major

component of the cost of implementing automated manufacturing systems. Such

software is also incomprehensible and hard to maintain. To resolve such difficulties

and to provide a high-level system of flexibility and maintainability, a knowledge­

based control software generator may be used. Such a software automatically gen­

erates an executable computer code from a description of the control variables and

the processes.

The purpose of this research is to develop a general framework of an expert

system based automatic PLC control software generator that will generate the con­

trol task codes and the wiring instruction of a given PLC based on the user defined

control function. The system will include:

1. User interface module

2. Functional code database

www.manaraa.com

2

3. \Viring instruction database

4. Error checking module

5. Task code module

6. Task code database

The user interface module provides a friendly environment in which user may

define the process to be controlled by giving the control variables, variable states,

and control logic. This description is stored in a LISP-like syntax in functional code

database. A wiring instruction is also generated to help the electrician identify the

control system '.viring. This is stored in the wiring instruction database. The user

interface module is general in the sense that the functional code generated can be

used with any PLC. The functional code is analyzed by the error checking module to

see if programming rules of a particular PLC have been follO\ved. If the functional

code is error free it is retrieved by the task code module of the same PLC and

converted into the task code which is stored in a task code file. The file can be

downloaded into the PLC through serial communication. The task code module is

a bidirectional module, which means that it may convert the functional code into

task code and vice versa. The PLC control software generator is a generic system.

vVith different error checking and task code modules, the system generates control

software for any PLC.

In this research, a generic user interface module was developed that generates

a functional code that is usable by error checking module and task code module

for any PLC. The error checking and task code modules being system specific have

been developed for the TI-530 PLC in the current research.

www.manaraa.com

3

The rest of the thesis will be organized in four chapters, where the need for

automatic control software generation, the use of expert systems in this area, and

the automatic software generators developed so far are discussed in Chapter Two,

the general framework of the control software generator and the implementation of

the generator in this research are discussed in Chapter Three, and the results and

conclusions of this research are discussed in Chapters Four and Five, respectively.

www.manaraa.com

4

2 REVIEW OF RELEVANT LITERATURE

2.1 Historical Background

Control is the most important element in any automated production system.

Transfer lines, numerical control, industrial robots, material handling and flexible

manufacturing systems all require some form of control to ensure their successful

operation [12:.

The first form of industrial process control was manual regulation of production

operations. The operator had absolute control. He had to use his own senses to

determine how well the process was doing. The coming of measuring instruments

eased the task of the operator, but the operator was still required to make necessary

changes to the input variables to keep the operation running smoothly. The advent

of the analog computer made this task even easier. ~ow the adjustments could

be made automatically \vith very little human intervention for minor changes in

the input variables. However, each "output variable~' had to be monitored and

changes were to be made in the ;'input variable" to maintain the output at the

desired level. As industrial processes got more complex, more efficient means of

carrying out the control actions were needed. The digital computer replaced the

conventional analog control devices. The digital-computer regulated the process on

a time-shared, sampled-data basis rather than by many individual analog elements,

www.manaraa.com

5

each working in a continuous dedicated fashion. The digital computer offered not

only an opportunity for greater efficiency in doing the same job than analog control,

it also opened up the possibility for increased flexibility in the type of control action,

as well as the option to reprogram the control action [12]. Many of the concepts and

strategies used in conventional analog control are used today in computer control,

especially in direct digital control.

Control can be divided into four categories:

1. Conventional linear feedback control (analog control)

2. Optimal control

3. Sequence control

4. Computer process control

Conventional linear feedback control is based on mathematical models. Lin­

ear differential equations are considered to be the building blocks of linear

control theory.

Optimal control involves the use of a computer to calculate the optimum oper­

ating conditions at which to run the process [13].

Sequence control is concerned with coordinating the timing and sequencing of

activities that take place in an automated production system. Sequence con­

trol consists of logic control and sequencing. Both types involve binary values,

i.e., 0 or 1, on or off, high voltage or low voltage and so on. These control

systems operate by turning on and off s,vitches, motors, valves and other de­

vices in response to operating conditions and as a function of time [12]. A

www.manaraa.com

6

logic control system, also referred to as a combinational system, is a switch­

ing system in which decisions are made and actions are taken in response to

events that occur in the production system. In other words, the outputs of

the controller are determined by the inputs from the production system. A

sequencing system uses internal timing devices to determine when the out­

puts to the production system should be changed. Thus sequential control

provides output signals that are a function of instantaneous input variables

as well as a function of time.

Computer process control uses stored program digital computer to control an

industrial process. Computer programming for process monitoring and control

is different from programming for data processing and scientific/engineering

calculations in the sense that the computer must be capable of responding to:

Timer-initiated events - events triggered by clock time

Process-initiated interrupts - incoming signals from a process

COlnputer commands to process - the computer system must have the

capability to direct the various process hard,vare devices that regulate

the process in the desired manner

System and program-initiated events - events triggered by other com­

puters in the network or by peripheral devices such as a card reader or

printer

Operator-initiated events - events triggered by input from operation per­

sonnel [12]

www.manaraa.com

7

Armature.

To
"~ormal1y open controlled

COnll!cts -

'--'=:--__ ~Ircuit
'\.. ~

c:::====::::;:~===;:::;:~ ;;/.7,

Figure 2.1: An electromechanical relay

Earlier. the operation of production equipment \vas controlled by means of con-

ventional relay control systems. Relay control systems consist of electromechanical

relays which are magnetic switches that can be actuated indirectly by other switches.

The operation of an electromechanical relay relies on the use of electromechanical

force generated by a coil magnet. \Vhen the coil is energized, an armature is drawn

towards the coil. The armature is attached to a lever arm as shown in the Figure 2.1.

The le\'er arm pushes against one of the contacts causing it to close against the op-

posite contact. Owing to the springiness of the contacts, they open when the coil

is deenergized)3]. As can be seen relay panels were bulky, difficult to modify and

time consuming (and hence expensive) to wire and document. Also, communication

between a relay-control system and one of the newly emergent minicomputers for

either data acquisition or supervisory control was impossible :32~.

The year 1969 saw the birth of the Programmable Logic Controller (PLC). It

was introduced in an effort to overcome the shortcomings of the conventional hard-

wired relay control systems. Today, PLCs are used extensively for sequential control

in transfer lines, robotics, process control and many other automated systems. It

www.manaraa.com

8

is defined by the National Electrical Manufacturers Association (NENIA) as:

A digitally operating electronic apparatus which uses a programmable

memory for the internal storage of instructions for implementing specific

functions such as logic, sequencing, timing, counting, and arithmetic to

control, through digital or analog input/output modules, various types

of machines or processes [12].

In essence, the programmable logic controller consists of computer hardware which is

programmed to simulate the operation of the individual logic and sequence elements

that might be contained in a bank of relays, timers, counters and other hard-wired

components [12]. It is a sequential logic device which generates output signals based

on the logic operations performed on the input signals. The program for the PLC

consists of a sequence of instructions that determine the inputs, outputs and the

logical operations.

Initially the PLC was successful due to its similarity to relay control systems.

Even the programming methods used for PLCs - ladder logic diagrams, were very

similar to circuit diagrams that the shop personnel were already familiar with. So

the shop personnel did not have to learn an entirely new programming language in

order to use the PLC. Programmable logic controllers have several advantages over

the conventional relay controls. These are:

1. Programming the PLC is often easier than wiring the relay control panel.

2. The PLC can be reprogrammed. Conventional relay controls must be rewired

and are often scrapped instead.

3. The PLCs take less space than relay control panels.

www.manaraa.com

9

4. Maintenance of the PLC is easier, and reliability greater.

5. The PLC can be connected to plant computer systems more easily than can

relays [12].

The PLC has six basic components. They are:

• Input module

• Output module

• Processor

• Memory

• Power supply

• Programming device

The input and output modules are connections to the industrial process to be

controlled. The inputs consist of signals from limit switches, pushbuttons, sensors

and other on/off devices. The outputs from the controller are onloff signals to

operate motors, valves and other devices required to actuate the process.

The processor is the central processing unit (CPU) that executes various logic

and sequencing functions. Tied to the CPU is the PLC memory \vhich contains the

program logic, sequencing and other input/output operations. A power supply pro­

vides DC power to operate the processor and I/O devices. The PLC is programmed

by means of a programming device [12].

Basic control functions performed by the PLC are:

www.manaraa.com

10

Control relay functions - an output signal from one or more inputs is generated

according to a particular logic rule.

Timing functions - an output signal is generated a certain length of time after an

input signal is received or an output signal is maintained for a certain length

of time.

Counting functions - the number of input contact closures are added up and an

output signal is produced when the sum reaches a certain count.

Arithmetic functions - addition, subtraction and comparison.

By definition of computer process control programmable logic controllers can

also be used for computer process control because the processor of the PLC is a

stored program digital computer. The capabilities of programmable controllers ha\'e

evolved so that they can perform much of the data-processing and other functions

that were previously reserved for computer control.

2.2 Expert Systems in Industrial Control

Knowledge-based expert systems are the latest addition to the rapidly devel­

oping field of software automation [16]. The main reason behind this is that expert

systems contain the knowledge of a human expert. They are suitable for an indus­

trial environment where system's configuration frequently changes according to the

model changes of products or enhancements in the system [30] [31]. Knowledge­

based programmable controllers have two distinct ad vantages over the conventional

programmable controllers. They are more flexible and versatile - flexible because un­

like the conventional controllers, the knowledge-based controllers are programmed

www.manaraa.com

11

by telling the controller how the plant ,yorks and specifying the process reqUIre­

ments and versatile because the system has the knowledge of the way in which the

plant works and the process requirements rather than just a program [27].

In highly automated factories of today control is very complex and involves

several steps:

• planning

• scheduling

• real time scheduling and monitoring

• coordination

• control

Expert Systems are already being used successfully in the first three areas. \Vork

is now being done towards their use in coordination and control [2].

Tashiro, Komoda, Tsushima and Matsumoto developed a Rule-Based Control

Software. This software was developed for constraint combinational control of dis­

crete event systems, especially factory automation systems. Here control logics are

embedded in software as data and control actions are automatically inferred from

the system situations by using production system methodology. Signals from/to

sensors/actuators are input/output through a bit-table. Process interface defini­

tion defines correspondence between each bit in the bit-table and a condition or a

conclusion described by rules. If-then rules and process interface definition data are

input/updated through a console CRT using a rule editor. A rule-structure checker

and a rule simulator are used to check rule correctness [30] [31].

www.manaraa.com

12

This software approach involves direct control of the manufacturing process.

In a lot of cases, this would mean replacement of the previous methods used for

process control. For instance, to use the Rule-Based Control Software in a factory

that is currently using a PLC for process control would mean removing the PLC

and bringing in a new computer system that would use expert systems to control

the process. This may not be very economical.

2.3 Automatic Code Generators

The process of control software developed can be simplified if such code can be

generated automatically. Constructing control software by conventional methods

such as the use of general purpose programming languages is an expensive process.

Such software is hard to understand and maintain and requires extensive time­

consuming debugging. Automatic generation of a control program would require

that the control logic be specified and an executable control program is generated

from the control logic specification. Transformation of a specification into an im­

plementation eliminates the highly error-prone and programmer dependent task of

generating executable code [24]. Other functions may also be added into the auto­

matic code generator package, such as modules to verify, analyze and simplify the

control logic specification.

One of the earliest attempts at automatic control software generation was made

by Aldana, Peire, Penalver, and Uceda. They developed a method for computer

aided generation of microprocessor software for controlling static po\ver converters.

Given the system specification, the elementary states that define all actions to be

done in every moment and the necessary control matrices are generated [1].

www.manaraa.com

13

Hanselmann and Schwarte developed a system for automatic production of ef­

ficient code for a multivariable controller to be run on fast target processors such

as digital signal processors (DSP) and 16 bit microcontrollers and microprocessors.

The code is efficient in terms of runtime memory usage and programmer productiv­

ity. Given a system specification, which is hardware independent, and a description

of the target hardware, an assembly language source code is generated that is nec­

essary to control the described system [14].

Automatic code generators have inspired the work done on electronic engine

control strategy at the Ford Motor Company. Srodawa, Gach, and Glicker devel­

oped a code generator for the Ford/Intel 8061 microprocessor. The description of

the control algorithm is coded in a high level application language called Ford Auto­

motive Control Terminology (FACT). The complete FACT specification is converted

to DEC-VAX machine code [28].

Code generators have also become available in the field of digital filtering. A

system written in MACSYMA generates FORTRAN code that is capable of solving

stochastic control and nonlinear filtering problems in symbolic form. The system

uses a list of key\vords and pieces of data that describe the problem. This list

is analyzed and a new list is built that consists of instruction in an intermediate

language called :vIacrofort for macro-FORTRA~. Finally the list is translated in a

FORTRAN 77 program [20].

Another code generator was developed at Carnegie Mellon U niversi ty for auto­

matic programming of controllers for discrete manufacturing processes. The control

logic is specified in terms of discrete states of physical states required for the opera­

tion. This specification is given in terms of a rule-based specification. The computer

www.manaraa.com

14

integrates the control logic for the whole system, analyzes the control specification

for completeness and logical consistency, and then generates a C source code for

on-line control computers. The functional description of the manufacturing proc­

ess and the process control logic is entered into a relational database at the ,,,"ork

station. A petri net model of the system is constructed automatically from the

given high level specification. This petri net model is analyzed for completeness

and logical consistency. Finally, it is this petri net model that is translated into

an executable control code. This code is then ported from the work station to the

computer that controls the process [24].

Expert Systems can be used in the development of automatic code generators.

A code generator similar to the one developed by Krogh, vVilson and Pathak was de­

veloped for stochastic control and filtering problem [10]. An expert system was used

for automatic FORTRAN code generation. The system is written in ~IACSYMA

and Lisp. It has four major components:

1. A modular system of programs written is :YIACSYl\IA which solve stochastic

and nonlinear filtering problems in symbolic form.

2. A natural language interface.

3. A "theorem proving module" usmg PROLOG capable of checking the well­

posedness of linear and nonlinear partial differential equations specified in

symbolic form

4. A module for generating FORTRAN code from the symbolic manipulation

module of the system

www.manaraa.com

15

The function of the system is to accept input from the user in natural language

with model equations expressed in symbolic form, to automatically select a solution

technique for the control or filtering problem, to reduce the model equation by

symbolic manipulations to a form appropriate for the technique, checking the well­

posedness of the model along the way; and to automatically generate a numerical

language code realizing the solution algorithm.

Different methods have been used to specify the control logic of the system to

be controlled among which a high level specification language and petri nets are

the ones most widely used. Petri nets are a well known powerful and rigorous tool

to describe distributed systems, featuring concurrent processes and synchronization

problems. The Petri net approach for detection and handling purposes and the

expert systems approach for diagnosis and decision are strongly similar and can be

utilized together [25] [2]. An expert system can be used to model the individual

processes or events and petri nets can be used to model the relationships between

the processes [35].

Gentina and Corbeel used Structured Adaptive Colored Petri nets (S.A.C.P.N)

and artificial intelligence techniques to automate the control design of flexible man­

ufacturing systems [8]. This is done in four steps:

1. Specifications of the requirements and objectives of productions in terms of

rules, facts and procedures are given according to an expert system modeling.

2. From the system specification the first global colored petri net is deduced by

inference.

3. Different solutions are proposed. For each solution proposed, the basic global

www.manaraa.com

16

scheduling of the process in terms of colored interpreted petri nets and the

strategies of control from interpreted meta-rules are obtained.

4. From this hybrid model composed of both strategy meta-rules and colored

petri nets a more complete model is deduced which gives both a structured

decomposition of the control process and a precise definition of links between

first the elementary tasks at the level of an S.A.C.P.N. and of the links between

S.A.C.P.N. model and the strategy selected at the hierarchical level. This

model gives a possible procedural implementation of the process control on a

set of computers.

An intermediate control language called Functional Control Language (FCL)

was developed for improving the software portability of PLCs [29]. FCL is and inter­

mediate language situated between PLC programming languages and PLC machine

code. It has a Lisp like structure and can be converted from and into each PLC

programming language such as Ladder Logic Diagram, Functional Block Diagram

or Sequential Functional Chart. A system called FAISES (Fuji AI-based Software

Engineering System) was developed to:

1. convert PLC language to FCL and vice versa.

2. generate machine code and convert this machine code back to FCL, if possible,

depending on the target machine language.

3. accumulate and select software libraries.

4. generate various kinds of documents such as program diagram, program con­

figuration diagram, I/O allocation list, memory map, cross-references list, etc.

www.manaraa.com

17

This FCL may be used as a high level specification language to specify the

control logic of the system directly instead of translating it from the PLC program­

ming language. The user defines the system to be controlled in terms of the control

variables, variable states, and control logic. This specification is stored in FCL.

Next, this FCL is translated to machine code.

Except for the automatic code generator developed at the Ford Motor Com­

pany, all the other code generators described generate control code in a high level

language such as FORTRAN, C, assembly language, etc. An attempt will be made

in this research to develop an expert system based code generator that takes as

input a description of the process to be controlled and generates the PLC task

code directly. The task code is the machine code representation of the ladder logic

diagrams. Thus, the interface needed for translating the high level language con­

trol code to the machine code acceptable by the process controller is eliminated.

Along the way wiring instruction is also generated to help the electrician identify

the control system wiring. The control logic description is stored in an intermedi­

ate functional code similar to the one described above [29]. It is this intermediate

functional code that is translated to the task code for the TI-530 PLC. Given a task

code, this task code module can also translate the task code back to the functional

code representation of the control logic. Thus the task code module is bidirectional.

Use of the functional code improves the software portability of the PLCs. This task

code can easily be enhanced to translate the intermediate functional code to the

task code for other PLCs as well.

www.manaraa.com

18

3 METHODOLOGY

A control software generator was developed in this research. The process of

control software generation involves three main steps.

1. Description of system to be controlled

2. Analysis of the system specification for syntax errors

3. Conversion of system specification to task codes

The user develops a description of the system to be controlled. The user provided

control system description is converted to a formal specification. This formal speci­

fication, before being converted to the machine code representation, i.e., task codes,

is analyzed for syntax errors. This chapter discusses the general structure and the

implementation of the automatic control software generator in detail.

3.1 General Structure of the Software Generator

3.1.1 Introduction

The different steps of development of control system specification, syntax error

checking, and translation of control system specification to the task code are done in

sequence. These steps of control software generation are performed using a modular

www.manaraa.com

19

approach with each module performing a specific task. The software generator

consists of a total of six modules:

1. User interface module

2. Functional code database

3. Wiring instruction database

4. Error checking module

5. Task code module

6. Task code database

A pictorial representation of this framework is shown in Figure 3.1.

The user interface module, as the name suggests acts as an interface between

the user and the task code module. It simply translates the user given control system

description into an intermediate functional code specification. This functional code

is a more formal description of the same system. After the functional code is

generated, the user interface module also creates a wiring instruction. This wiring

instruction provides an aid to the electrician by showing the connections between:

• various contacts in the input module of the PLC and the input devices

• various coils in the output module of the PLC and the output devices to be

controlled

The functional code and the wiring instruction are stored in their respective databases.

The user interface module is generic, in the sense that it can take any system

www.manaraa.com

20

Syste!'\ User
-'" "-
./ Interface / Specifica tion

Module

\!/

"'iring

instruction

database

Functional
code "-

./

database

/ 1"-

Error
Checking

Module

"-1/

Task code

Module

1
Task code

database

PLC

Figure 3.1: Expert systems based control software generator for the PLC

www.manaraa.com

21

specification or process description and translate it into a general functional code

description.

The functional code is retrieved by the error checking module. The error check­

ing module is system specific, which means that one error checking module is needed

for each different type of PLC since PLCs vary in their programming design. The

error checking module simply performs syntax checks. If the system specification is

error free it can be input into the corresponding task code module. The task code

module, which is also system specific, translates the given functional code to the

task codes for that particular PLC. The task code module is bidirectional, which

means that not only can it translate the functional code into the corresponding

task codes, but it can also translate the given task codes into the corresponding

functional code specification. The advantage of it being bidirectional is that if the

user modifies the task codes, then the user would not have to redefine the control

system description to get the functional code. The functional code could easily be

obtained from the task codes directly. These task codes can be downloaded to a

PLC for execution through serial communication. If the PLC programming device

is connected to the PLC then the ladder logic diagram corresponding to the task

codes can also be checked.

Having an intermediate functional code improves the portability of the PLC

software. The PLC programming languages depend greatly on the hardware of each

PLC, but the functional code that has been developed in this research is machine

independent. Thus the functional code can be used with any PLC and one does

not have to reprogram the whole control system in order to use a different PLC. A

more general framework showing this portability is shown in Figure 3.2.

www.manaraa.com

SysteM

SpecifiCo. tio ~

22

User Functionol

Interfuce " Code
/

Module Do.tobo.SE'

'-/ ".V

Error Error

ChecKing ChecKing

Module Module

'-/ _1
TUSK To.SK

Code Code

Module Module

~ ~
PLC PLC

Figure 3.2: General framework

~
Error

ChecKing

Module

l
Tusk

Code

Module

t
PLC

www.manaraa.com

23

The general framework in Figure 3.2 shO\vs one generalized user interface mod­

ule and one functional code database which are hardware independent and one error

checking module and task code module each for each different type of PLC. Thus to

build a complete system several error checking and task code modules are needed.

Once a general functional code is generated it can be used with any desired PLC,

thus improving the portability of PLC software.

3.1.2 The user interface module

The user interface module is a generic module. It translates the user glven

description of a system or process to be controlled to an intermediate functional

code specification.

In order to be able to define a process or system that one wishes to control,

it would be necessary to understand what the process is, what it constitutes of,

and how it is to be described. The follO\ving sections describe a process, its general

breakdown structure, and the format to be followed when entering the process

description.

3.1.2.1 Process description By dictionary definition a process is a sys­

tematic series of actions. Stamping of parts, putting parts in a bin, drilling holes

in parts etc. are all different manufacturing processes. As shown in Figure 3.3 a

process can be broken down into a several control steps, namely operations. Thus

an operation is just one control step of the entire process. An operation can be

further decomposed into a set of conditions and actions. This decomposition can be

best illustrated through an example. Consider a process of filling a tank with \va-

www.manaraa.com

24

ter. This process would require one switch to turn on the pump to fill the tank, one

pushbutton switch to stop the pump in case of an emergency, and one limit switch

to test if the tank is full or not. This process can be broken do"m into operations.

1. vVhen the pump is turned on, the emergency s\vitch is off and the tank is not

full a solenoid is turned on to start filling the tank.

2. As long as the solenoid is on, the emergency switch is off and the tank is not

full the water keeps flowing into the tank. \Vhen the tank is full the limit

switch is turned on and the water will stop flowing.

The various on/ off switches are the input devices and the on/ off state of the switches

constitute the conditions of the operations involved. The solenoid used to start and

stop of the flow of water is the output device. The starting and stopping of the

flow are thus the actions involved. vVhen the specified conditions of an operation

are true, the corresponding action is performed.

Conditions - The conditions of an operation consist of physical conditions

and functions. Physical conditions are associated with the physical state of discrete

(on/off, closed/open) input states such as limit switches, photodetectors, pushbut­

ton switches, internal control relays, and circuit breakers. Table 3.1 shows the

one/zero interpretation for different input and output devices.

Sometimes it may become necessary to perform a function in order to control

an operation. For example, a process of filling a bin with say 20 parts requires

some way in which parts can be counted. This would require a counting function.

The following are the different types of functions that may be used in controlling a

process:

www.manaraa.com

25

Process

Opera. tions

Conditions Actions

PhYSiCa.l F"unctions
Conditions

Mul tiple Input
Functions

Opera.nds Input
Conditions

Figure 3.3: General breakdown of a process

www.manaraa.com

26

Table 3.1: Binary input and output devices

Device One/Zero Interpretation
Input

Limit switch
Photodetector
Pushbutton switch
Control relay
Circui t breaker

Output
Motor
Alarm buzzer
Control relay
Lights
Valves
Clutch
Solenoid

Contact/no contact
Contact/no contact
On/off
Contact/no contact
Contact/no contact

On/off
On/off
Contact/no contact
On/off
Closed! open
Engaged/not engaged
Energized / not energized

1. Timing functions - An example would be the generation of an output signal

after a certain length of time has elapsed. Another example would be to

maintain an output signal for a certain length of time.

2. Counting functions - The counter counts up the number of input contact

closures and produces a programmed output when the sum reaches a certain

count. The counter can then be reset.

3. Arithmetic functions - These includes capabilities of adding, subtracting, com-

paring, dividing, multiplying and finding the square root.

4. Bit functions - These functions involve clearing a particular bit, testing the

status of a selected bit, setting a particular bit to 1, etc.

www.manaraa.com

27

5. "Vord functions - These functions involve converting binary to decimal, con­

verting decimal to binary, ANDing two words in memory, ORing two words in

memory, rotating a word in memory, performing exclusive OR of two ,,;ords

in memory, etc.

6. Move functions - These functions involve loading a data constant to a memory

location, moving a set of words starting at a particular memory location to

another memory location, etc.

There are tvvo types of functions - single input functions and multiple

input functions .

• Single Input Functions reqUIre only one input condition. When the physi­

cal condition is true the function is performed. A function that is used to

add numbers in two memory locations is an example of a single input func­

tion. When the given input condition for the function is true the addition is

performed .

• Multiple Input Functions reqUIre one or two additional input conditions.

These additional input conditions may be required to reset the function operands

and/or enable the function. A counting function ,,;ould be an example of a

multiple input function because an additional condition would be needed to

enable the counter. The counter counts the number of times the initial in­

put condition is true. It counts until the sum reaches a certain preset count.

When the additional condition is true the counter is enabled to start counting.

"Vhen the enable input is turned off the counter is reset to zero.

www.manaraa.com

28

Actions - The actions of an operation are the alternation of output device

status or internal instructions. The output devices include devices such as motors,

alarm buzzers, lights, valves, clutches, and solenoids and internal devices and the

instructions are internal control relays, master control relays, unconditional end,

conditional end, etc.

3.1.2.2 Format of the process description To describe the process to

be controlled it must be broken down according to the structure described above.

The system must be described in a fixed format and must be entered in an ASCII

file.

The process is described in terms of operations using some keywords. A total

of seven keywords are used in order to identify the different subdivisions of an oper­

ation. There are several attributes associated with each keyword. These attributes

are specified in fields. Table 3.2 shows the key\vords and their attributes. Table 3.3

shows the order in which the keywords are used to describe the operation.

Each operation is identified by an operation name and a unique operation num­

ber. The operation name is specified using the keyword 'Operation_name' follO\ved

by the name of the operation and the operation number is specified using the key­

word 'Operation_number' followed by an operation number. The operation number

must be unique in order to distinguish between different operations in a process.

For example, an operation for filling a water tank may be named and numbered as

follows:

Operation_name FilLtank

Operation_number 1

www.manaraa.com

29

The physical conditions and functions of an operation are specified using the

keywords 'PhysicaLcondition' and 'Function' respectively. The physical condition

is specified using its keyword, the device name, and the value the device is to take 0

or 1. If the physical condition is a control relay a control relay number must also be

given by the user. For instance, a physical condition consisting of 'LimiLswitch_1'

that must be closed and another physical condition consisting of 'ControLrelay 10'

that must be off are specified as follO\vs:

PhysicaLcondition LimiLswitch_1 1

PhysicaLcondition ControLrelay 0 10

The functions involved in an operation are specified using the keyword followed by

the name of the function and the operand list. In the case of the multiple input

function the conditions used for resetting and/or enabling the function are specified

using the keywords 'Function_condition_l' and 'Function_condition_2'. Functions

may require both resetting and enabling conditions and hence a function may have

upto two types of input conditions for resetting and enabling functions. To make

the function logic concise a restriction has also been placed on the number of input

conditions of each type. Any multiple input function may have upto two input con­

ditions of each type. In most cases, it is sufficient to have upto two input conditions

of a particular type and hence this restriction should not pose a problem. For exam­

ple a counter function has one operand which is a preset count, say 20. The input

condition required to enable the function is 'Enable/ReseLLimiLswitch_2'. Each

www.manaraa.com

30

time 'IncremenLLimiLswitch_l' is turned on the counter is incremented. When

'Enable/ReseLLimiLswitch_2' is open the counter is reset to zero. This function is

described as follows:

PhysicaLcondition

Function

IncremenLLimiLswitch_l 1

CTR 20

For more detail on the order of the function operands and the reset and enable

conditions refer to Table 6.4 in Appendix A.

The actions of an operation are specified using the keyword' Action' followed by

the name of the output device and the value the device would take if the conditions

for the operation are true. If an internal device is used a number is also included

in the description. For example an action that turns a 'ControLrelay 45' on and an

action that turns a solenoid on are specified as follows:

Action

Action

ControLrelay 1

Solenoid 1

45

See Appendix A for a more detail listing of the rules that must be follmved when

describing a control process.

3.1.2.3 Description of the functional code The functional code follows

a Lisp format. It uses a set of curly brackets to represent one unit, shown in

Figure 3.4. Each operation, consisting of physical conditions, functions if any, and

actions is enclosed in a set of curly brackets.

www.manaraa.com

31

AND OPERA TION
Device type and nUMber,
Function and its operands &.
input conditions, Not operation

Device type and nUMber,
Instruction type and nUMber,
Not operation

((DperQtion Argl Arg2 ., Argn) Result)

1-____ AND opera tion

Ex: AND operation - { { AND X 1 (NOT C 1) Y 1

1~ ReL. Device type &. nUMber

Argll Device type 8. nUMber

OR OPERA TION

AND operat~n as descr~ed above

OR operation The resul t of all the AND
opera tions is the saMe and
so It is listed only once

Ex: OR operation - (OR { AND X 1 C 1 } { AND e 2 { eTR 1 X 2 10 } } Y 1 }

Counter function

Figure 3.4: Basic form of functional code

www.manaraa.com

32

The physical conditions, functions, internal devices and instructions, and ac­

tions are represented bya symbol and a number. There is a different symbol for the

input devices, output devices, internal devices, internal instructions, and functions.

See Table 3.4 for the symbols used. To distinguish between devices, internal in­

structions or functions of the same type a number is used. A device with a value of

1 is represented with a symbol for the device and a number, whereas a device with

a value of 0 is represented with a reserved word 'NOT', a symbol, and a number in

a set of curly brackets. For example an input device with a value of 1 is represented

as X 1, and one with a value of 0 is represented as { NOT XI}. A function and

its operands are included inside another set of curly brackets, thus treating it as a

subunit.

All the physical conditions of an operation are ANDed together. Some of

the operations may have the same action. All such actions are ORed. Thus the

functional code mainly consists of AND and OR operations. Each AND operation

is enclosed in a set of curly brackets and is thus treated as one unit.

Looking back at the water tank example, the first operation involves the switch

to turn the pump on or off, the emergency switch, and the limit switch. These

three devices are treated as input devices They are labeled as X 1, X 2, and X 3

respectively. The conditions of this operation are:

1. X 1 must be on (pump must be on)

2. X 2 must be off (emergency switch must be off)

3. X 3 must be open (tank is not full)

The action of this operation uses a solenoid. This solenoid is labeled Y 1. The

www.manaraa.com

33

action involves turning on the solenoid. If the above mentioned conditions are true

the solenoid represented by Y 1 is turned on.

The second operation has the solenoid (Y 1), the emergency switch (X 2), and

the limit switch (X 3) as parts of the physical conditions. The conditions involved

are:

1. Y 1 must be on (solenoid must be on)

2. X 2 must be off (emergency s\vitch must be off)

3. X 3 must be open (tank is not full)

As long as these conditions are true the solenoid Y 1 is to stay on, i.e, the water is

to continue flowing. Both the above mentioned have the same action of keeping the

solenoid Y Ion. Hence these two operations may be ORed. Thus the functional

code for this system is as follows:

{ OR { AND X 1 { NOT X 2 } { NOT X 3 } }

{ AND Y 1 { NOT X 2 } { NOT X 3 } } Y 1 }

3.1.3 The wiring instruction

The user interface module generates a wiring instruction after the functional

code is generated. The wiring instruction acts as a link behveen the functional code

and the control system description in the sense that it shows what the symbols of

the input and output devices represent. It simply lists the symbol and the number

used in the functional code and the corresponding device that it represents. For

instance, in the water tank example shown above the wiring instruction would be:

www.manaraa.com

34

X 1 Pump_On/Off switch

X 2 Emergency _switch

X 3 \VateLFulLLeveLLimiLswitch

Y 1 FilLtank_solenoid

The wiring instruction is stored in the wiring instruction database.

3.1.4 The error checking module

PLCs vary in their programming styles. Each different type of PLC has its own

programming rules. In order to be able to use the functional code with a particular

PLC it must be made sure that it does not violate any of the programming rules

of that particular PLC. Hence before the functional code can be translated into

the task code some error checking must be done. For instance, some PLCs may

have a restriction on the number of physical conditions or the number of actions

an operation may have. As it can be inferred from the above description, the error

checking module is system specific. Hence one error checking module ,vould be

needed for each different type of PLC.

The error checking is mainly syntax checking. Error checking must be done to

see if programming rules are followed, if the functions used are available on the PLC,

if functions have the required operands in the required sequence, etc. The errors

found may be written to a file and this file may be used to correct the indicated

errors.

www.manaraa.com

35

3.1.5 The task code module

The task code module translates the functional code generated by the user

interface module to the task codes of a particular PLC. Task codes are the executable

machine code representation of the control logic specified by the user. The task

codes may be ASCII code or hexadecimal or any other type that is machine readable.

The task code module is also capable of converting the task codes back to the

functional code. Thus if modifications are made to the control logic at the task

code level, the corresponding functional code can be obtained directly from the task

codes rather than having the user redefine the system specification and generating

the functional code from the user interface module.

Each different PLC has a different machine code representation for the control

logic. Hence the task code module must generate a task code representation that

is acceptable by a particular PLC. In other words, the task code module is system

specific. One task code module is needed for each different type of PLC.

3.2 Implementation

The automatic control code generator has been developed on the VAX/V~IS

operating system. The user interface, the error checking module, and the task code

module have all been written in OPS5.

3.2.1 The user interface module

The user interface module takes as input a control logic specification that is

given by the user. The system specification is to be entered following the format

www.manaraa.com

36

that has already been described in the previous section.

Each operation is read in sequentially. As each physical condition is read in,

it is determined if it includes an input device, a control relay, or an output device.

Depending on the type of physical condition a symbol and a number is assigned

to it (see Table 3.4 for the different types devices used). In the case of input and

output devices a sequential number is assigned to them, whereas in the case of

control relays the number given by the user is assigned.

If the device (other than control relay) is read in as part of a physical condition,

it is first checked to see if this device has been used before in a previous operation. If

not, it will be treated as an input device and is assigned the next number in sequence.

If this device is read in the future it will always be treated as an input device and

will always be assigned the same number. For instance, if 'limiLswitch_3' is read

in for the first time as part of a physical condition and there already exists another

input device then 'limiLswitch_3' is assigned the symbol X and number 2 (since it

is the second input device in sequence), and in the future use of 'limiLswitch_3' it is

always referred to as X 2. If the device read in has been used before then it is used

in the same context as before with the same number. A device read in as part of an

action is treated in the same way. However, it does not make sense to have an input

device (type X) as a part of an action. Hence care must be taken in the sequence

in which the operations are entered. In general the sequence of operations is not

important, except in one case. If a device must be treated as an output device,

then the operation that lists it as an output device, i.e., as a part of an action, must

be entered before the operation in which the output device is a part of a physical

condition.

www.manaraa.com

37

Some of the common functions that PLCs are capable of handling are shovm

in Appendix A. The function names and operand sequence are fixed. Along with

a name and operand list multiple input functions have input conditions associated

with them. The input conditions are similar to physical conditions except for the

fact that they have a special purpose, i.e., to reset or enable a function. So the input

conditions are assigned a symbol and number in the same fashion as the physical

conditions. If a multiple input function has two of anyone type of input condition,

the situation is handled as follows:

1. Suppose a multiple input function has two input conditions under which it is

reset, say two different limit switches must be closed. As a first step a new

operation is created that uses these two limit switches as input devices. A

control relay is used as an output device for this operation. It is turned on

whenever the physical conditions corresponding to these two limit switches

are true.

2. This control relay is then used as the input condition to the function.

Thus a new operation is added to the process, but this operation is internal to

the PLC. The input conditions are then finally included in the operand list of

the function. For example: A counter function requires one input condition to

enable the counter. Suppose two limit switches, 'Enable/ReseLLimiLs.vitch_l' and

'Enable/ReseLLimiLswitch_2', must be closed to enable the counter. These two

switches must be open to reset the counter to zero. Each time 'ControLrelay 5' is

turned on the counter increments by one. The description for this operation would

be:

www.manaraa.com

38

PhysicaLcondi tion ControLrelay 1 5

Function CTR 15

Function_condition_l Enable/ReseLLimit _switch_l 1

Function_condi tion_2 Enable/ReseLLimit_switch_2 1

Action Conveyor_On/OfLSolenoid 1

Since the operation has two input conditions of the same type, a new operation is

created that uses the bvo limit switches as physical conditions and if the two limit

switches are closed a randomly chosen control relay is turned on. Thus the control

relay is part of the action of this new operation. The functional code for these two

operations would be as follows:

{ { AND X 1 X 2 } C 43 }

{ { AND C 5 { CTR C 43 15 } } Y 1 }

The wiring instruction is generated after the functional code has been generated.

The wiring instruction simply shows the relationship between the input devices used

by the user and the symbols used in the functional code. Thus the wiring instruction

would help the electrician in making connections between the input (output) module

of the PLC and the input (output) devices used. For the above counter example

the wiring instruction would be:

X 1 Enable/ReseLLimiLswitch_l

X 2 Enable/ReseLLimiLswitch_2

www.manaraa.com

39

Y 1 ConveyoLOn/ Off_Solenoid

The algorithm used is this module is shown in Figure 3.5.

In this research the functional code generated was used with the TI-530 PLC.

The user manual to be used for TI-530 PLC is given in Appendix B. It lists the

functions available on this PLC along with the types of addresses and their ranges

that may be used as function operands.

3.2.2 The error checking module

The Error checking module performs syntax error checks on the functional code

that is to be used on the TI-530 PLC. The syntax rules for TI-530 PLC are listed

in Appendix B. These mainly include checking the number of physical conditions,

actions, single input functions, and multiple input functions in an operation and

the sequence in which these may be entered. Detailed error checking is done on

functions to make sure that the operands are in correct sequence and the correct

memory addresses are used. All the errors found are written to a file. This file

may be accessed to see what the errors are. A summary of the errors is output to

the screen to give the user the information regarding the number of errors found.

If any errors are found, they must be corrected before the functional code can be

used on the task code module. If a task code with errors is entered into the PLC

it may result in a fatal error. The PLC will not function but there will be no way

of determining what the error is once the task code has been downloaded into the

PLC.

www.manaraa.com

40

Figure 3.5: Algorithm of the Lser interface module

www.manaraa.com

41

3.2.3 The task code module

The task code module has been developed for the TI-530 PLC. It converts the

given functional code to the task codes and vice versa. It provides the user with

two options:

1. to convert the functional code to the corresponding task codes, and

2. to convert the task codes to the functional code specification.

3.2.3.1 Conversion of functional code to task code The functional

code is read in sequentially, one word at a time. As each word of the functional

code is read in it must be determined if it is an input device, an output device, an

internal device, an internal instruction, a function, or a memory address location.

There is a different task code for each of these different devices, instructions, and

functions. The task codes for the physical conditions and the input conditions of

multiple input functions are the same. The general algorithm used to perform these

checks is shown in Figure 3.6.

The task codes of all devices, instructions, and functions are listed in the order

in which they are listed in the functional code except in the case of multiple input

functions. In the functional code the order is as follows:

function name

in put condi tion(s)

operands

www.manaraa.com

-12

Figure 3.6: General algorithm used to convert functional code to task code

www.manaraa.com

43

On the other hand the task codes for the function and its operands are listed in the

following order:

input conditions

function name

operands

For example, the multiple input function, counter (CTR) has one input condition

and one operand (see Appendix A). The functional code for this function would be:

..... { CTR 1 X 2 25 }

where X 2 represents an input device which must have a value of one in order to

enable the counter and 25 is the preset counter value that the counter counts up

to. The task codes would be:

...... 8502 A801 0019

where the task code 8502 represents the input device X 2, the task code A801

represents the counter numbered 1, and the task code 0019 is the hexadecimal

representation of the preset value 25. As can be seen the position of the function

name and the input condition is interchanged.

The task codes for the TI-530 PLC are listed in Table 8.1 in Appendix C. The

task codes are four digit hexadecimal numbers. In the case of devices, functions

and instructions, the two most significant digits simply represent the type of device,

www.manaraa.com

44

function, or instruction and the two least significant digits indicate the device,

function, or instruction number in hexadecimal. In the case of memory location

addresses the most significant digit represents the starting memory location and the

last three least significant digits indicate the memory location offset. For example

the task code for an output device numbered 14, i.e., Y 14 used as part of an

action is 990D where 99 is the numeric symbol for an output device used as an

action in an operation. The task code for memory address V500 is 01F3 where the

most significant digit zero indicates the starting address 0000 and 1F3 is 500 in

hexadecimal and it is the offset from the starting location.

3.2.3.2 Conversion of task code to functional code The conversion of

the task codes to the functional code follo\vs the same algorithm as for conversion

of functional code to task code. Each task code read is analyzed to see what it rep­

resents and it is then converted to the corresponding device, instruction, function,

or memory address. The algorithm is straightforward except in the case of multiple

input functions. Since the task codes for the input conditions are listed before the

task code for the function and since the task codes for the input conditions and

physical conditions are the same, there is no way to know beforehand that the task

code read in is that of an input condition or a physical condition. The only way

that it can be determined that an input condition was read in is when on further

reading a multiple input function is encountered. The task code is initially read

in as a physical condition. On reading the task code of a multiple input function

one has to back up and retreat the previously read one or two physical conditions

(depending on the type of function) as input conditions and copy them into the

www.manaraa.com

45

function operand list. For example when translating the above task codes of the

counter function, as 8502 is read it is translated into an input device which is a part

of the physical condition. When the next task code is read and it is determined

that it represents a multiple input function the input device read in prior to the

function is now retranslated into an input condition of the counter function.

3.2.4 SOlne general comments on the user interface module and task

code module designs

Expert systems are not well suited to perform problems that involve a complex

numerical calculations and string manipulations. Hence, to do such tasks in this

research external routines have been written. A total of six external routines have

been used which are described as follows:

1. Rand - a random number generator

2. Convert - a string manipulation function used to insert a blank space III a

continuous string of non blank characters. This routine is used when read­

ing in memory address locations (see Appendix A for description of memory

addresses) .

3. Input - a subroutine used to read in all the task codes as character strings

and to insert blank spaces between each digit of the task code.

4. Combine - a string manipulation function used to concatenate upto four

strings that contain one character each. This is used when reading in the

task codes that consist of four digits. Each digit is treated as a character.

www.manaraa.com

46

5. Hex - an arithmetic function used to convert decimal numbers to hexadecimal

numbers.

6. Decimal - an arithmetic function used to convert hexadecimal numbers to

decimal numbers.

Some intermediate files are created during the process of the functional code

generation and task code generation. These files are simply used to store inter­

mediate results and hence may be deleted after the task is performed. There were

mainly two instances at which intermediate results were stored in intermediate files:

1. When a lot of string manipulations ,,,ere involved, the only possible way to

do the string manipulations was to write the intermediate results to a file,

and then read this intermediate file and do the desired manipulations as the

strings are read in.

2. To cleanup the final output by removing extra blank spaces. The easiest way

to do this is to write the results to an intermediate file and then read this file

again and rewrite the results to the final file. \Vhen data is read in a second

time the blank spaces are ignored. The result is a neat output.

The documentation in each of the programs lists the names of the intermediate files

created. The final results are stored under the filenames provided by the user.

www.manaraa.com

47

Table 3.2: Keywords and their attributes

Keyword Fieldl I Field2 I Field3 I Field4 I Field5 Ii
Operation_name operation

I I I name
Operation_number umque

I
operation

number I!
PhysicaLcondition name of value internal i

input o or 1 control
device relay no.

Function Function

I
opl op2 op3 op4 a

I I name
Function_Condi tion_l name of I value internal

!
II

input I 0 or 1 control
device I relay no.

t

I

1\ Function_Condition_2 name of! value internal
! I input I 0 or 1 control

I

I

device relay no.

Action output value internal
device or o or 1 device

internal number
switch

aWhere op stands for operand.

www.manaraa.com

48

Table 3.3: Operation description format

Operation_name
Operation_number
PhysicaLcondition
PhysicaLcondi tion

Function
Function_condition_l (for multiple input functions only)
Function_condition_2 (for multiple input functions only)

Action
Action

www.manaraa.com

49

Table 3.4: Device, instruction, and function symbols

Device, Function or Instruction
Input device
Output device
Control relay
Master Control relay
Unconditional End
Condi tional End
Addition function
Subtraction function
Divide function
M ul ti ply function
Square root function
Compare function
Move \Vord function
Binary to Decimal Conversion function
Decimal to Binary Conversion function
Word And function
Bit Clear function
Bit Pick and Test function
Bit Set function
Load Data Constant function
Word Rotate function
\Vord OR function
\Vord exclusive OR function
Counter function
Timer function
Up / down Counter function
Move 'Word from Table function
Move word to Table function
Shift Bit Register
Shift 'Word Register

Symbol
x
y

C
MCR
END
ENDC
ADD
SUB
DIV
I\IULT
SQRT
CMP
I\IOV\V
CBD
CDB
'WAND
BITC
BITP
BITS
LDC
WROT
\VOR
\VXOR
CTR
TMR
UDC
M\VFT
M\VTT
SHRB
SHR\V

www.manaraa.com

50

4 RESULTS

To verify the functioning of the framework presented in this research, the user

interface module was used to create the functional code for the TI-530 PLC. The

error checking module and the task code module, being system specific, ,vere devel­

oped for this PLC. A control system was developed for a drilling station where a

part is positioned, clamped, drilled and finally indexed out on a conveyor. The user

interface module was used to develop the functional code for this system. This func­

tional code was then analyzed for syntax errors and translated into the task codes

for the TI-530 PLC. The system developed is discussed in the following section.

4.1 A Complete Example

The example discussed in this section is taken from the TI-530 PLC program­

ming manual [21].

A workpiece is to be indexed automatically into a drilling station. The work­

piece is clamped and drilled in the station before being indexed out on a conveyor.

Figure ,-1.1 shows the layout of the drilling machine where:

lL5 represents a sensor to indicate if the drill is in home position.

2L5 represents a sensor to indicate if the drill has reached the workpiece.

www.manaraa.com

51

5LS 6LS 0:::
o-c::::J 3LS

CONVlOYOR

Figure 4.1: Layout of drilling machine

3LS represents a sensor to indicate if maximum drill depth is reached.

-iLS represents a sensor to indicate if the workpiece is in position.

5LS represents a sensor to indicate if the workpiece is clamped.

6LS represents a sensor to indicate if workpiece is undamped.

4.1.1 Explanation of the process

Operation 1: Index Conveyor - \Vhen the .-\uto5\vitch is in the auto mode (value

1), the \vorkpiece is undamped (6LS is closed), the drill is in home position

(lLS is dosed), and the work piece is not in home position (4LS is open)

relay 1 is turned on~ allowing the conveyor to index a new workpiece into the

drilling station.

www.manaraa.com

52

Operation 2: Clamp - vVhen the auto_switch is in auto mode, the workpiece is in

position (4LS is closed), the drill is not in home position (lLS is open), and

drill time has elapsed (control relay 2 is on) relay 2 and relay 6 are turned on

to clamp the workpiece.

Operation 3: Clamp - As long as the drill time has not elapsed, drill is in home

position (lLS is closed), the workpiece is in position (-!LS is closed), and work

piece is not clamped (5LS is open) relay 2 and relay 6 are to stay on, that is,

the work piece is to be clamped.

Operation 4: Drill down - \Vhen the workpiece is clamped (5LS is closed), drill

time has not elapsed (control relay 2 is off), the auto switch is in auto mode

(value 1), and maximum drill depth has not been reached (3LS is off) relay 3

is turned on to move the drill to the workpiece.

Operation 5: Start drill - \-Vhen the workpiece is clamped (5LS is closed) and the

drill reaches the workpiece (2LS is closed) relay 4 is turned on to start the

drill.

Operation 6: Dwell timer - \Vhen the maximum drill depth is reached (3LS is on)

and the drill is started (relay -! is on) the dwell timer starts timing. The timer

is reset when the drill reaches home position.

Operation 7: Drill up - \Vhen the drill time is elapsed (control relay 2 is on) and

the drill is not already in home position (ILS is off) relay 5 and relay 3 are

turned on to move drill back to home position.

Operation 8: Unclamp - 'When the drill starts its upward motion (relay 5 is on)

www.manaraa.com

53

and maximum drill depth has not been reached (3LS is open) relay 6 is t umed

on to unclamp the work piece.

4.1.2 Process description used by the user interface module

The text file containing the description of the system according to the required

format is shown in Table 4.1.

Table 4.1: System specification

Operation-Ilame index_con veyor
Operation_number 1
PhysicaLcondi tion Auto_switch 1
PhysicaLcondi tion 6LS 1
PhysicaLcondition 1LS 1
PhysicaLcondition 4LS 0
Action Relay_1 1

Operation_name clamp
Operation_number 2
PhysicaLcondi tion Auto_sv,'itch 1
PhysicaLcondition ControLrelay 1 2
P hysicaLcondi tion 1LS 0
PhysicaLcondi tion 4LS 1
Action Relay _2 1

Operation_name clamp
Operation_number 3
PhysicaLcondi tion ControLrelay 0 2
PhysicaLcondition 1LS 1
PhysicaLcondi tion 5LS 0
PhysicaLcondi tion 4LS 1
Action relay _2 1

Operation_name clamp
Operation_number 4
PhysicaLcondition Auto_switch 1

www.manaraa.com

54

Table 4.1 (Continued)

PhysicaLcondition ControLrelay 1 2
P hysicaLcondi tion 1L5 0
PhysicaLcondition 4L5 1
Action Relay_6 1

Operation_name clamp
Operation_number 5
PhysicaLcondition ControLrelay 0 2
PhysicaLcondi tion 1L5 1
PhysicaLcondi tion 5L5 0
PhysicaLcondition 4L5 1
Action relay _6 1

Operation_name drill_down
Operation_number 6
PhysicaLcondition 5L5 1
PhysicaLcondition controLrelay 0 2
P hysical_condi tion auto_switch 1
P hysicaLcondi tion 3L5 0
Action Relay_3 1

OperationJlame 5tart_drill
Operation_number 7
Physi caLcondi tion 5L5 1
PhysicaLcondi tion 2L5 1
Action RelayA 1

Operation_name DwelLtimer
Operation_number 8
Physi cal_condi tion 3L5 1
PhysicaLcondition Relay A 1
Function Tmr_5 1.9
Function_condition_1 1L5 0
Action ControLrelay 1 2

Operation_name Drill_up
OperationJlumber 9

www.manaraa.com

55

Table 4.1 (Continued)

PhysicaLcondi tion 1LS 0
PhysicaLcondi tion ControLrelay 1 2
Action Relay _5 1

Operation_name DrilLup
Operation_number 10
PhysicaLcondi tion 1LS 0
PhysicaLcondi tion ControLrelay 1 2
Action Relay _3 1

Operation_name Unclamp
Operation_number 11
PhysicaLcondi tion Relay _5 1
PhysicaLcondi tion 3LS 0
Action Relay _6 1

4.1.3 Intermediate functional code

The following intermediate functional code specification corresponds to the

example system specification.

{ { AND X 1 X 2 X 3 { NOT X 4 }} Y 1 }

{ OR { AND X 1 C 2 { ~OT X 3 } X 4 } { AND { NOT C 2 } X 3

{ NOT X 5} X 4 } Y 2 }

{ OR { AND X 5 { NOT C 2 } X 1 { NOT X 6 } { AND { NOT X 3 }

C2}Y3}

{ { AND X 5 X 7 } Y 4 }

{ { AND X 6 Y 4 { TMR_S 1 { NOT X 3 } 1.9 } } C 2 }

{ { AND { NOT X 3 } C 2 } Y 5 }

{ OR { AND C 2 { NOT X 3 } X 1 X 4} { AND { NOT C 2 } X 3

www.manaraa.com

56

NOT X 5 } X 4 } { AND Y 5 { NOT X 6 } } Y 6 }

4.1.4 Wiring instruction

The wiring instruction for the example specification is given in Table 4.2.

Table 4.2: \Viring instruction for example system specification

Input/Output Module
Xl
X2
X3
X4
X5
X6
X7
Y1
Y2
Y3
Y4
Y5
Y6

4.1.5 Task codes

Input/Output Device
Auto_switch
6L5
1L5
4L5
5L5
3L5
2L5
Relay _1
Relay _2
Relay _3
Relay A
Relay _5
Relay _6

The task codes for the example specification are:

IE 0000 8501 8902 8903 8B04 9901 8501 8802 SB03 S904 8602 8903 8B05

8904 9400

IE OOOE 99028505 8A02 8901 8B06 8703 8802 9400 9903 8505 8907 9904

8506 B904

www.manaraa.com

57

IE OOIC 8703 AOOI 001398028703880299058402 8B03 8901 89048602

89038B05

IE 002A B505 8B06 9400 9906

4.1.6 Ladder Logic Diagram

The ladder logic diagram corresponding to the above system specification is

shown in Figure 4.2.

www.manaraa.com

58

XI X2 X3 X4 Y I

HH
Xl C2 X3 X4 Y 2

H~
C 2 X 3 X 5 X 4

I~
X5 C2 Xl X6 Y 3

1---1 rtH
X 3 C 2

-+HI,-
X 5 X 7 Y 4

~H
X 6 Y 4 C 2

~H P = 1.9

X 3

X 3 C 2
Y 5

C 2 X 3 X 1 X 4 Y 6

m-1H
c 2 X 3 X 5 X 4

I~
Y 5 X 6

Figure 4.2: Ladder Logic Diagram for example system specification

www.manaraa.com

59

5 CONCLUSION

The initial framework for automating the generation of control software for the

TI-530 PLC was developed in this research. The system is expert system based

and consists of six modules. The user defines the system to be controlled in a

specification file. This specification is entered in an established format in terms of

operations that consist of conditions and actions. The operations are designed such

that when the conditions of the operation are true the actions are executed.

The system specification is converted to the intermediate functional code spec­

ification by the user interface module. This functional code increases the software

portability of the PLCs. A wiring instruction that describes the various connections

between the input and output modules of the PLC to the corresponding input and

output devices is also generated.

The functional code goes through a series of tests in the error checking module

to see if it violates any of the programming rules of the PLC for which the task

codes must be developed. The functional code, being in standard form can easily

be translated into the task code for the TI-530 PLC by the task code module. This

task code module is bidirectional and hence it can also convert the given task code

specification into its corresponding functional code specification. The task codes

thus generated can easily be downloaded through serial communication to the PLC

www.manaraa.com

60

for execution. On connecting the programming unit the corresponding Ladder Logic

Diagram can be seen.

5.1 Future Research

PLCs have evolved a great deal since their birth in 1969. Several features such

as timers, counters, arithmetic, data transfer, matrix bit-level operations have been

added bringing the PLCs closer to the mini-computer. Some PLCs have been en­

hanced to the extent of including built-in subroutines and library functions that can

be called from the user logic program as a subroutine. \Vith PLCs having such ad­

vanced features and experiencing ongoing advancements, it can be confidently said

that PLCs are here to stay. The major drawback of PLCs available in the market

today is the lack of standardization of PLC programming languages and hence lack

of communication between PLCs. This research presents a framework to improve

the communication between PLCs by introducing an intermediate control logic rep­

resentation, the functional code. This functional code can easily be translated into

the machine code of any desired PLC.

The portability of the PLC software can be implemented by enhancing the code

generator developed in this research. New error checking and task code modules

must be developed for other PLCs since PLCs differ in their programming styles

and their internal machine representation of the control logic. The functional code

developed can be entered into the error checking and task code modules for the

desired PLC, thus generating the machine code representation and eventually the

ladder logic diagram for the given control logic.

A logic simplification module may be added to the framework presented for

www.manaraa.com

61

efficiency in memory usage and program execution and better understandability of

the control logic. The user given system specification may be simplified before it

is translated into the functional code. One place where some type of simplification

may be done is in the Or operations. The existing system simply combines the

various And operations that have the same actions. This results in various physical

conditions being listed more than once. Thus if this operation is simplified it would

not only result in a clearer and easier to understand specification, but will also

result in utilizing memory more efficiently. If such an approach is adapted changes

may have to be made in the task code module to handle the different types of Or

operations.

A module for control logic analysis may be added into the framework to evaluate

some properties of a given system specification such as, conditions of deadlock,

infinite loop, unsafe states, etc. This logic analysis may also be done before the

system specification is translated into the functional code.

A process simulator may also be included to test the control programs be­

fore building the physical system. Simulating the system would help highlight any

problems that might occur when implementing the actual system.

www.manaraa.com

62

6 APPENDIX A USER MANUAL FOR THE USER INTERFACE

MODULE

The user interface module requires a description of the process to be controlled

as input. This description needs to be in a specific format. The following rules need

to be followed when creating the control system description:

1. A process to be controlled must be broken do\vn into control steps called

operations.

2. An operation is identified by a name and a unique number. Keywords and

the pattern specified in Table 6.1 must be used to describe an operation.

The keywords 'operation_name' and 'operation_number' are used to specify

the name and number of the operation respectively. The physical conditions,

functions and actions of an operation are specified by the key words 'physi­

caLcondition', 'function', and 'action' respectively. The input conditions of a

multiple input function are specified using the keywords 'function_condi tion_1'

and 'function_condition_2'.

3. All operation and device names must be alphanumeric without any blank

spaces. For example: LimiLswitch_1, Advance_conveyor, etc.

www.manaraa.com

63

4. All device names referring to different devices must be umque. Sequential

numbering may be used to distinguish between devices of the same type. For

example, if two solenoids are used in a process the two solenoids may be named

as 'solenoid_I' and 'solenoid_2'.

5. The operation description must follow the order shown in Table 6.2.

6. Some common PLC internal instructions, internal devices, and functions along

with their operands are shown in Tables 6.3, 6.4, and 6.5. These instructions,

devices and functions must be referred to by the given abbreviations.

7. All internal devices and instructions must be numbered except the conditional

and unconditional end instructions.

8. A function may not be the first condition of an operation. Hence an operation

must have at least one physicaLcondition specified before a function can be

specified.

9. An operation having a combination of multiple and single input functions

requires that the multiple input function be specified before the single input

function is specified.

10. All functions must have the given number of operands in the given order.

11. Multiple input functions may have as many as bvo types of input conditions

and a maximum of two of each type of input condition.

www.manaraa.com

64

Table 6.1: Keywords and their attributes used in the system description

II Keyword I Field1 I Field2 i Field3 I Field4 I Field5 II
I

I Operation_name operation I I I
I I

name i I I
i I

Operation_number umque

I operation

!.
number I

:

PhysicaLcondi tion name of value internal

I
input o or 1 control

device relay no.

I
Function Function i opl op2 I op3 I op4 a

name I !

Function_Condition_1 name of value internal I

I
i input o or 1 control I

I device I relay no. I
I Function_Condition_2 name of value I internal I

!
I
I

input I o or 1 control I I
!

device relay no. I I I ,

Action output value i internal i I

device or o or 1 device
internal number

switch

avVhere op stands for operand.

www.manaraa.com

65

Table 6.2: Operation description format

Operation_name
Operation_number
PhysicaLcondition
PhysicaLcondition

Function
Function_condition_l (for multiple input functions only)
Function_condition_2 (for multiple input functions only)

Action
Action

Table 6.3: Common PLC internal devices and instructions

Instruction or Device
Control Relay
Master Control Relay
End Master Control Relay
Unconditional End
Conditional End

Symbol
ControLrelay n a
MCRn
~lCRE n
END
ENDC

a'Where n refers to the instruction number.

www.manaraa.com

66

Table 6.4: Single input functions and their operands

Function Function name Operands
Add ADD Opl: Memory location of first

value to be operated on
Op2: Memory location of second

value to be operated on
Op3: Memory location for storage

of result
Subtract SUB Opl: Memory location of first

value to be operated on
Op2: Memory location of second

value to be operated on
Op3: Memory location for storage

of result
Divide DIV Opl: Memory location of dividend

Op2: Memory location of divisor
Op3: Memory location of quotient

and remainder
Multiply MULT Opl: Memory location of multiplicand

Op2: :\IIemory location of multiplier
Op3: :\I1emory location of product

Square root SQRT Opl: ~Iemory location of
value to be operated on

Op2: Memory location for storage
of result

Compare eMP Opl: 1Iemory location of value
to be compared with

Op2: Memory location of value
being compared with

Op3: Device indicating Opl
is less than Op2

Op4: Device indicating Opl
is greater than Op2

Move \Vord :\IIOVvV Opl: Starting address of words
to be moved

Op2: Starting destination address
for words to be moved to

www.manaraa.com

Function
Load Data
Constant

Move Image
Register to word

Move word to
Image Register

Convert Binary
to Decimal
Convert Decimal
to Binary

Word And

Word Or

Word Rotate

Word
Exclusive Or

67

Table 6.4 (Continued)
Function name Operands
LDC Op1: Memory location

rvlIRW

1IYVIR

CBD

CDB

'NAND

'NOR

\VROT

\VXOR

for data constant
Op2: Data constant to

loaded
Op1: Device type and number
Op2: Destination word address
Op3: Number of bits to be moved
Op1: Source word address
Op2: Device type and number
Op3: Number of bits to be moved
Op1: Source memory address
Op2: Destination memory address
Op1: Source Memory address
Op2: Destination memory address
Op3: Number of bits to be converted
Op1: Memory location of

first word
Op2: Memory location of

second word
Op3: Memory location where the

word is to be stored
Op1: Memory location of one

word to be acted upon
Op2: Memory location of second

word to be acted upon
Op3: Memory location for the

storage of result
Op1: Memory location of

word to be rotated
Op2: Number of rotations
Op1: Memory location of one

word to be acted upon
Op2: Memory location of second

word to be acted upon
Op3: Memory location for the

storage of result

www.manaraa.com

Function
Bit clear

Bit pick

Bit set

One PC scan
(One/Shot)

68

Table 6.4 (Continued)
Function name Operands
BITC Opl: Memory location of word

to be acted upon
Op2: Number of bits to be cleared

BITP Opl: Memory location of word
to be acted upon

Op2: Number of bits to be tested
BITS Op1: Memory location of word

to be acted upon
Op2: Number of bits to be set

O/S

www.manaraa.com

69

The system is user friendly. A menu driven approach has been taken for ease

of use. The user is given five options:

1. Convert a system specification to the intermediate functional code specifica­

tion.

2. Perform error checking on a given intermediate functional code specification.

3. Convert a given functional code to the corresponding task code.

4. Convert a given task code specification to the corresponding functional code.

5. Exit

For option 1 it is required that the user have the system specification in an

ASCII file. The user is asked for the name of the file that contains the control system

description and the name of the output file that is used to store the intermediate

functional code. For option 2 the user is asked for the names of files that contain

the functional code and the one to which all error messages are written to. Under

options 3 and 4 the names of the files with the functional code and the task code are

prompted for. Option 5 enables the user to exit the system when the user is done

executing the program. This menu is displayed at the end of every task performed.

www.manaraa.com

70

Table 6.5: Mutiple input functions and their operands

Function

Counter

Millisecond Timer

Seconds timer

Move word
from table

Move word
to table

Bit Shift
Register

Word Shift
Register

Up/Down

Function name
and condition
CTR
Function_condition_l
TMR_MS
Function_condi tion_l
TMR_S
Function_condition_l
MvVFT

Function_condition_l
MWTT

Function_condition_l
SHRB

Function_condi tion_l
Function_condition_2
SHRvV

Function_condition_l
Function_condi tion_2
UDC

Operands

Opl: Count upper limit
Enable condition
Op 1: Preset time
Enable/Reset condition
Opl: Preset time
Enable/Reset condition
Opl: Location of table address

pointer for next word to be
moved

Op2: Destination address
Op3: Number of words to be moved
Op4: Starting address of table
Reset condition
Op 1: Source address of word
Op2: Location of table address

pointer
Op3: Number of words to be moved
Op4: Starting address of table
Reset condition
Opl: Starting address of

shift register
Op2: Number of bits in the

shift register
Data input condition
Reset / enable condition
Opl: 1-Iemory location of the word

to be placed in the shift register
Op2: Memory location of start of

shift register
Op3: Number of words in shift register
Enable condition
Reset condition
Op1: Preset value of counter
Op2: Device to be energized when

count is zero
Function_condition_l Down condition
Function_condition_2 Reset /Enable condition

www.manaraa.com

71

7 APPENDIX B USER MANUAL FOR THE TI-530 PLC

\Vhen creating the file with the specification for the system to be controlled

using the TI-530 PLC it is important to follow certain syntax rules. These rules

have been specified in the TI-530 PLC manual. They have been summarized here.

The error checking module checks for violations of any of these rules.

1. The internal instructions, internal devices, and functions available on the TI-

530 PLC are listed in Tables 7.1 and 7.2. These must be referred to by the

symbols specified. In the case of functions the operands must be used in

the order indicated. The types of memory addresses to be used as various

operands in also shown. Table 7.3 shows the different addresses and the

address ranges available on the TI-530 PLC.

2. The memory addresses shown in Table 7.3 are straightforward except the DCP

address. This address indicates the drum number and the step number. The

address ranges from 101 to 3016. The two least significant digits represent

the step number and the remaining digit(s) represent the drum number. For

example, address location DCP1020 represents drum number 10 and step

number 19 (zero based).

3. Each operation may have as many as 11 physical conditions.

www.manaraa.com

72

4. Each operation may have as many as 7 actions.

5. Each operation must have at least 1 action associated with it.

6. An operation may have as many as three single input functions.

7. If an operation has only one single input function associated with it then the

operation may have as many as 8 physical conditions.

8. If an operation has two single input functions associated with it then the

operation may have as many as 5 physical conditions.

9. If an operation has three single input functions associated vrith it then the

operation may have as many as 2 physical conditions.

10. An operation may have only one multiple input function associated with it.

11. An operation that has a multiple input function may not have more than two

physical conditions specified before it.

12. An operation that has one multiple input function, this function may be fol­

lowed by up to two single input functions or six physical conditions in series.

13. An operation with one multiple input function and one single input function

may not have more than five physical conditions, two preceding the multi­

ple input function and three following it. The three physical conditions can

precede or follow the single input function in any combination.

14. An operation with a multiple input function and two single input functions

may have upto two physical conditions, but these physical conditions may

only precede the multiple input function.

www.manaraa.com

73

Table 7.1: TI-530 PLC internal devices and instructions

Instruction or Device
Jump
End Jump
Control Relay
Master Control Relay
Master Control Relay End
Unconditional End
Conditional End

PLC Coil Symbol
JMP n a

JMPE n
ControLrelay n
MCRn
MCREn
END
ENDC

a"Where n refers to the instruction reference number.

www.manaraa.com

74

Table 7.2: TI-530 PLC functions

Functions
Single Input Functions

ADD
(Add)

SUB
(Subtract)

DIV
(Divide)

MULT
(Multiply)

SQRT
(Square root)

CMP
(Compare)

Operands

~Iemory Location of first value
(V, WX, WY)
Memory Location of second value
(V, WX, WY)
Memory location for storage of result
(V, WX, WY)
Memory Location of first value
(V, WX, WY)
Memory Location of second value
(V, \VX, WY)
Memory location for storage of result
(V, WX, \VY)
1Iemory Location of dividend
(V, WX, WY)
Memory Location of divisor
(V, \VX, WY)
Memory location of quotient and remainder
(V, WY)
Memory Location of multiplicand
(V, \VX, WY)
Memory Location of multiplier
(V, WX, WY)
Memory location of product
(V, \VY)
Memory Location of value
(V, \VX, WY)
Memory Location for storage of result
(V, WY)
A:)'Iemory Location of value to be

compared with
(TCC, TCP, DSC, DSP, DCP, V, "VX, \VY)
B: Memory Location of value being

compared
(TCC, TCP, DSC, DSP, DCP, V, "VX, \VY)
Output device or control relay indicating

www.manaraa.com

Functions

MOV\V
(l\Iove Word)

75

Table 7.2 (Continued)
Operands

A is less than B
(C, Y)
Output device or control relay indicating

A is greater than B
(C, Y)
Starting address of words to be moved
(TCC, TCP, DSC, DSP, DCP, V, \VX, \VY)
Starting destination address for words to
(TCP, DSP, DCP, V, \VY)

be moved to
N umber of words to be moved
(1-256)

CBD Source Memory address
(Convert Binary to Decimal) (TCC, TCP, DSC, DSP, DCP, V, \VX, WY)

Destination Memory address
(V, \VY)

CD B Source Memory address
(Convert Decimal to Binary) (V, WX, \VY)

\VAND
(\Vord And)

BITC
(Bit Clear)

BITP
(Bit Pick)

Destination Memory address
(TCP, DSP, DCP, V, \VY)
Number of digits to be converted
(1-4)
l\-lemory location of first word
(TCC, TCP, DSC, DSP, DCP, V, \VX, \VY)
Memory location of second \'lord
(TCC, TCP, DSC, DSP, DCP, V, \VX, WY)
Memory location where the ,vord is to be

stored
(TCP, DSP, DCP, V, \VY)
Memory location of word to be operated on
(V, \VY)
N umber of bit to be cleared
(1-16)
Memory location of word to be operated on
(V, \VX, \VY)

www.manaraa.com

Functions

BITS
(Bit Set)

76

Table 7.2 (Continued)
Operands
N umber of bi t to be tested
(1-16)
Memory location of word to be operated on
(V, \VY)
N umber of bi t to be set
(1-16)

LDC Memory location for data constant
(Load Data Constant) (TCP, DSP, DCP, V, \VY)

Data constant to be loaded
(0-32767)

MIR\V Input or Output device or
(Move Image Register to \Vord) internal control relay

(X, Y, C)
Destination word address
(TCP, DSP, DCP, V, \VY)
N umber of bi ts to be moved
(1-16)

MWIR Source word address
(!vlove \Vord to Image Register) (TCC, TCP, DSC, DSP, DCP, V, \NX, \VY)

Input or Output device or

\VROT
(Word Rotate Right)

\VOR
(\Vord Or)

internal control relay
(X, Y, C)
N umber of bi ts to be moved
(1-16)
Memory location of word to

be rotated
(V, \VY)
Number of times the 4-Bit segments are to

be rotated
(1-3)
Memory location of one word to be

acted upon
(TCC, TCP, DSC, DSP, DCP, V, \VX, \VY)
Memory location of second word to be

acted upon
(TCC, TCP, DSC, DSP, DCP, V, \VX, \VY)

www.manaraa.com

77

Table 7.2 (Continued)
Functions Operands

Memory location for the storage of result
(TCP, DSP, DCP, V, WY)

WXOR Memory location of one word to be
("Word Exclusive Or) acted upon

O/S (One/Shot)

Multiple Input Functions
CTR (Counter)

Function_condition_1
TMR_MS (Timer Millisec)

Function_condi tion_1
TMR_S (Timer .1 Sec)

Function_condi tion_1
M\VFT
(Move Word From Table)

Function_condition_1
MWTT
(Move \Vord To Table)

(TCC, TCP, DSC, DSP, V, \VX, \VY)
Memory location of second word to be

acted upon
(TCC, TCP, DSC, DSP, V, \VX, \VY)
Memory location for the storage of result
(TCP, DSP, DCP, V, WY)

Count upper limit
(1-32,767)
Enable condition
Preset time which timer times down from
Enable/Reset condition
Preset time which timer times down from
Enable/Reset condition
Location of table address pointer

for next word to be moved
(V)
Destination address for word to be

moved
(V)
N umber of words to be moved
(1-256)
Starting address of table
(V)
Reset condition
Source address of word to be

moved
(V)
Location of table address pointer
(V)

www.manaraa.com

Functions

78

Table 7.2 (Continued)
Operands
N umber of words to be moved
(1-256)
Starting address of table
(V)

Function_condition_1 Reset condition
SHRB Starting address of shift register
(Bit Shift Register) (C, Y)

N umber of bits in shift register
(1-16)

Function_condition_1 Data input
Function_condi tion_2 Reset / enable condition

SHR\V j\Iemory location of word to be placed
(\-Vord Shift Register) in shift register

(TCC, TCP, DSC, DSP, DCP, V, WX, WY)
~vIemory location of start of shift

register
(V)
N umber of words in shift register
(1-16)

Function_condition_l Enable condition
Function_condition_2 Reset condition

UDC Preset value of the maximum value to
(Up/Down Counter) which the counter will count

(1-32767)
The output device or internal control

relay to be energized when the
count is zero

(C, Y)
Function_condition_l Down condition
Function_condi tion_2 Reset IEnable condition

www.manaraa.com

79

Table 7.3: Memory addresses used as function operands

Address type Address range
X 1 - 1023
Y 1 - 1023
e 1 - 511
V 1 - 1024
WX 1 - 1023
WY 1 - 1023
Tce 1 - 255
TCP 1 - 255
Dse 1 - 30
DSP 1 - 30
DCP 101 - 3016

www.manaraa.com

80

8 APPENDIX C TASK CODES FOR THE TI-530 PLC

The task codes of the TI-530 PLC are four digit hexadecimal numbers. There is

a different task code for each of the different types of devices, instructions, functions,

addresses. The different task codes for the devices, instructions, functions, and

addresses are shown in Tables 8.1 and 8.2.

In the case of instructions, devices, and functions the first two most significant

digits represent the type of device, instruction, or function, the remaining two digits

are the hexadecimal representation of the number of the device, instruction, or

function. In the case of memory address location the most significant digit indicates

the starting address location and the remaining three digits indicated the offset.

www.manaraa.com

81

Table 8.1: Task codes for TI-530 PLC

Description Symbol Task code
First Physical Condition X 85nn a

(Device number less than 256) Not X 87nn
y B5nn
Not Y B7nn
C 84nn
Not C 86nn

First Physical Condition X E5xx b

(Device number between 256 and 511) Not X E7xx
Y C5xx
Not Y C7xx
C E4xx
Not C E6xx

First Physical Condition X B4xx
(Device number between 512 and 767) Not X B6xx

Y A5xx
Not Y A7xx

First Physical Condition X F4xx
(Device number between 768 and 1023) Not X F6xx

Y C4xx
Not Y C6xx

Following Physical Condition X S9nn
(Device number less than 256) Not X SBnn

Y Bgnn
Not Y BBnn
C SSnn
Not C SAnn

Following Physical Condition X E9xx
(Device numbe between 256 and 511) Not X EBxx

aWhere nn indicates the device or function number in hex­
adecimal.

bvVhere xx indicates the last two digits of device number
in hexadecimal.

www.manaraa.com

82

Table S.l (Continued)
Description Symbol Task code

y C9xx
Not Y CBxx
C E8xx
Not C EAxx

Following Physical Condition X B8xx
(Device numbe between 512 and 767) Not X BAxx

Y A9xx
Not Y ABxx

Following Physical Condition X D8xx
(Device numbe between 768 and 1023) Not X DAxx

Y C8xx
Not Y CAxx

Single Or Physical condition X SDnn
(Device number less than 256) Not X SFnn

Y BDnn
Not Y BFnn
C 8Cnn
Not C 8Enn

Single Or Physical condition X EDnn
(Device number between 256 and 511) Not X EFxx

Y CDxx
Not Y CFxx
C ECxx
Not C EExx

Single Or Physical condition X BCnn
(Device number between 512 and 767) Not X BExx

Y A1xx
Not Y A3xx

Single Or Physical condition X DCnn
(Device number between 768 and 1023) Not X DExx

Y COxx
Not Y C2xx

Action Y 99nn
(Device number less than 256) Not Y 9Bnn

C 98nn

www.manaraa.com

83

Table 8.1 (Continued)
Description Symbol Task code

Not C 9Ann
JMP 92nn
JMPE 96nn
MCR 9Cnn
MCRE 9Enn
END FF01
ENDC FE01

Action Y F9nn
(Device number between 256 and 511) Not Y FBxx

C EOxx
Not C E2xx

Action Y ADnn
(Device number between 512 and 767) Not Y AFxx
Action Y CCnn
(Device number between 768 and 1023) Not Y CExx
Function ADD DOnn

SUB D1nn
CMP D6nn
DIV D3nn
MULT D2nn
SQRT D4nn
BITC F2nn
BITP FOnn
BITS FInn
SHRB DBnn
CBD FDnn
CDB FCnn
WAND FAnn
'NOR F8nn
WROT E3nn
WXOR E1nn
SHR\V D9nn
LDC F3nn
MIRvV D7nn
MWIR D5nn

www.manaraa.com

84

Table 8.1 (Continued)
Description

Or Operation with more
than 1 Physical Condition

Symbol
MOVW
MWFT

Task code
F5nn
C3nn

MWTT C1nn
CTR A8nn
TMR_S AOnn
TMR_MS ACnn
UDC A4nn
O/S F7nn

9400

www.manaraa.com

85

Table 8.2: Memory areas and their corresponding task codes

Memory area
Xl

X1023
Yl

YI023
Cl

C5ll
V1

V1024
WX1

WX1023
WY1

WY1023
TCP1

TCP128
TCP129

TCP255

Task code
4001

43FF
6001

63FF
0001

01FF
0000 (Zero based)

03FF
6001

63FF
7001

73FF
4001

4080
4101

417F

www.manaraa.com

86

Table 8.2 (Continued)
Memory area Task code

TCC1 4081

TCC128 4100
TCC129 4181

TCP255 41FF
DSP1 5001

DSP30 501E
DSC1 501F

DSC30 503C
DCP101 1010

DCP3016 llEF

www.manaraa.com

87

9 BIBLIOGRAPHY

[1] F. Aldana, J. Peire, C. M. Penalver and J. Uceda; "Computer Aided Gen­
eration of Microprocessor Software for Controlling Static Power Convert­
ers"; Proceedings of the Third IFACjIFIP Symposium on Software Computer
Control 1982; Pergamon Press: Oxford, England; 249-253.

[2] H. Atabakhche, D. S. Barbalho, R. Valette, and M. Courvoisier; "From
Petri Net Based PLCs to Knowledge Based Control"; Proceedings IECON'86
1986 International Conference on Industrial Electronics, Control and
Instrumentation; Institute of Electrical and Electronics Engineers: York, NY;
1986; Vol 2; 817-822.

[3] A. D. Baker, t. L. Johnson, D. I. Kerpelman, and H. A. Sutherland;
"GRAFCET and SFC as Factory Automation Standards Advantages and Lim­
itations"; 1987 American Control Conference; American Automatic Control
Council: Green Valley, AZ; 1987; Vol 3; 1725-1730.

[4] G. Balbo, G. Chiola, G. Franceschinis, and G. M. Roet; "Generalized Stochastic
Petri Nets for the Performance Evaluation of FMS"; Proceedings 1987 IEEE
Conference on Robotics and Automation; Computer Society Press of IEEE:
Washington, D.C.; 1987; Vol 2; 1013-1018.

[5] G. Bruno and G. Marchetto; "Process Translatable Petri Nets for the Rapid
Prototyping of Process Control Systems"; IEEE Transactions on Software
Engineering; IEEE Computer Press Society: 'Washington, D.C.; 1986; Vol SE-
12, No.2; 346-357.

[6] R. A. Chard; Software Concepts in Process Control; NCC Publications:
Manchester, England; 1983; 119-150.

[7] M. Courvoisier, R. Valette, J. 1\1. Bigou, and P. Esteban; "A Programmable
Logic Controller Based on a High Level Specification Tool"; International
Conference on Industrial Electronics, Control, and Instrumentation: IEEE
Proceedings of the IECON'83; Institute of Electrical and Electronics Engi­
neers: New York, NY; 1983; 174-179.

www.manaraa.com

88

[8] J. C. Gentina and D. Corbeel; "Coloured Adaptive Structured Petri-Net: A
Tool for the Automatic Synthesis of Hierarchical Control of Flexible Manu­
facturing Systems (F.M.S.)"; IEEE 1987 International Conference on Robotics
and Automation; Computer Society Press of the IEEE: \Vashington, D.C.;
1987; Vol 2; 1166-1173.

[9] K. W. Golf; "Artificial Intelligence in Process Control"; Mechanical
Engineering; American Society of Mechanical Engineers: New York, NY; Oct
1985; Vol 107/No. 10; 53-57.

[10] C. Gomez, J. P. Quadrat, A. Sulem, G. L. Blankenship, P. Kumar, A. LaVi­
gna, D. C. MacEnany, K. Paul, and 1. Yan; "An Expert System for Control and
Signal Processing with Automatic FO RTRAN Code Generation"; Proceedings
of 23rd Conference on Decision and Control; Institute of Electrical and Elec­
tronics Engineers: New York, NY; 1984; 716-723.

[11] S. J. Grant; "Programming Languages and Programmable Controllers";
Proceedings of the First Annual Control Engineering Conference; Control En­
gineering: Barrington, IL; 1982; 95-97.

[12] M. Groover; Automation, Production Systems, and Computer Integrated
Manufacturing; Prentice-Hall: Englewood Cliffs, NJ; 1987; 281-424.

[13] M. Groover; Automation, Production Systems, and Computer Integrated
Manufacturing; Prentice-Hall: Englewood Cliffs, N J; 1980; 642-669.

[14] H. Hanselmann and A. Schwarte; "Generation of Fast Target Processor
Code from High Level Controller Descriptions"; IFAC 10th Triennial \Vorld
Congress; Pergamon Press: Oxford, England; 1987; Vol 4; 93-98.

[15] M. Kamath and N. Viswanadham; "Applications of Petri Net Based Mod­
els in the Modelling and Analysis of Flexible Manufacturing Systems"; IEEE
International Conference on Robotics and Automation; IEEE Computer Press
Society: Washington, D.C.; 1986; Vol 1; 312-317.

[16] M. S. King, S. L. Brooks, and R. M. Schaefer; "Knowledge Based Systems";
Mechanical Engineering; American Society of Mechanical Engineers: New
York, NY; Oct 1985; Vol 107/No. 10; 58-61.

[17] Komoda, Kero, and Kubo; "An Autonomous, Decentralized Control System for
Factory Automation", Computer; IEEE Computer Society Press: Washington,
D.C.; Dec 1984; Vol 17, No. 12; 73-83.

www.manaraa.com

89

[18J B. H. Krogh and G. Ekberg; "Automatic Programming of Controllers for Dis­
crete Manufacturing Processes", IFAC 10th Triennial World Congress; Perga­
mon Press: Oxford, England; 1987; Vol 4; 161-165.

[19] B. H. Krogh, R. 'Wilson, and D. Pathak; "Automatic Generation of Control
Programs for Discrete Manufacturing Processes"; The Robotics Institute 1987
Annual Research Review; Carnegie Melon University: Pittsburgh, Pennsylva­
nia; 1987; 21-31.

[20] F. LeGland and A. Gondel; "Systematic Numerical Experiments in Nonlin­
ear Filtering with Automatic Fortran Code Generation"; Proceedings of IEEE
Conference on Decision and Control, Institute of Electrical and Electronics
Engineers: New York, NY; 1986; 638-642.

[21J Model 530 Programmable Controller Program Design Guide Manual No.
530-8104; Texas Instruments Incorporated; Second Edition; 1983.

[22J Y. Narahari and N. Viswanadham;" A Petri Net Approach to the Modelling and
Analysis of Flexible :Manufacturing Systems"; Annals of Operations Research;
Baltzer: Basel, Switzerland; 1985; Vol 3-4, 449-473.

[23J Non-Intelligent Terminal Protocol Compatibility Specification; Texas Instru­
ments Incorporated: Johnson City, Tennessee; 1981; 1-12.

[24J D. Pathak and B. H. Krogh; "Concurrent Operation Specification Language,
COSL, for Low-Level Manufacturing Control"; Paper; ECE Dept; Carnegie
Mellon University; 1988; 1-26.

[25] A. Sahraoui, ?H. Atabakhche, M. Courvoisier, and R. Valette; "Joining Petri
Nets and Knowledge Based Systems for Monitoring Purposes"; IEEE 1987
International Conference on Robotics and Automation; Computer Society
Press of the IEEE: Washington, D.C.; 1987; Vol 2; 1160-1165.

[26] Series 500 Communication Task Code Compatibility Specification; Texas In­
struments Incorporated: Johnson City, Tennessee; 1987; 1-116.

[27] W. H. Simmonds; "Future Trends in Process Control"; Electronics and Pmver,
Institute of Electrical Engineers: London, England; Sept 1987; Vol 33, No.9;
570-572.

[28] R. J. Srodawa, R. E. Gach, and A.. Glicker; "Preliminary Experience with the
Automatic Generation of Production-Quality Code for the Ford/Intel 8061 Mi­
croprocessor"; IEEE Transactions on Industrial Electronics; Institute of Elec-

www.manaraa.com

90

trical and Electronics Engineers: New York, NY; 1985; Vol IE-32, No.4; 318-
326.

[29] H. Tanaka, C. Nakajima, and M. Yoshida; "Intermediate Functional Lan­
guage FCL for Improving Software Portability of Programmable Controllers";
Proceedings of the USA-JAPAN symposium on Flexible Automation; ACME:
New York, NY; 1988; Vol 2; 1149-1154.

[30] Tashiro, Komoda, Tsushima, and Matsumoto; "Advanced Software for Con­
straint Combinational Control of Discrete Event Systems - Rule-based Con­
trol Software for Factory Automation"; IEEE 1985 CO~IPINT-Computer
technologies; IEEE Computer Society Press; 1985; 73-83.

[31] T. Tashiro, N. Komoda, 1. Tsushima, and K. Matsumoto; "Rule-Based Control
Software System for Factory Automation - Its Rule Correctness Check Sup­
port And Response-Time Estimation" ;Software For Computer Control 1986
Selected Papers from the Fourth IFAC/IFIP Symposium, Graz, Austria; Perg­
amon Press: Oxford, England; 1987; 53-58.

[32] T. J. Williams, The Use of Digital Computers in Process Control; Instrument
Society of America:Research Park, N.C.; 1984; 137-151.

[33] R. Wilson and B. H. Krogh; "Specification and Analysis of Control Separa­
tion Models for Discrete State Systems"; Paper; ECE Dept.; Carnegie Mellon
University; 1988; 1-29.

[34] J. T. \Voon; "What the Future Holds For Programmable Controller Lan­
guages"; Proceedings of the First Annual Control Engineering Conference;
Control Engineering: Barrington, IL; 1982; 91-93.

[35] M. D. Zisman; "Use of Production Systems for Modeling Asynchronous, Con­
current Processes"; Pattern-Directed Inference Systems; D. A. Waterman and
F. Hayes-Roth; Academic Press: New York, NY; 1978; 53-68.

	1989
	An expert systems based automatic control software generator for the Programmable Logic Controller
	Sangeet Bhatnagar
	Recommended Citation

	An expert systems based automatic control software generator for the Programmable Logic Controller

